
	

	

	

	 	

Copyright	©	2010-2016,	etherFAX,	LLC	-	Proprietary	&	Confidential	

etherFAX	REST	API	Reference	2.0	

A	web	based	API	for	sending,	receiving	and	managing	fax	and	document	delivery	
through	the	etherFAX	network.	

June	
	

2017	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 2	

Interface	Overview	
	

The	etherFAX	API	is	a	web	interface	based	on	REST	semantics	using	simple	HTTP	GET/POST	web	operations	
compatible	with	many	operating	systems	and	programming	languages.	This	interface	is	provided	to	all	application	
and	fax	server	partners	that	wish	to	integrate	fax	delivery	into	their	applications	and	services.	

This	web	API	provides	access	to	simple	resource	controllers.	At	this	time,	supported	controllers	are	Accounts,	
Outbox,	Status,	Inbox	and	Routes.	Each	resource	supports	optional	parameters	within	the	URI	scheme	and	
provides	responses	in	various	data	formats	(JSON,	XML,	simple	URL	encoded	data,	etc.).	

Web	Service	Base	URL	
	
All	requests	referenced	in	this	document	use	the	following	base	URL:	

https://na.connect.etherfax.net/rest/2.0/api	

If	a	simple	GET	is	performed	on	the	root	API	URI,	the	following	text	will	be	returned	with	the	remote	client’s	IP	
address	displayed.	

etherFAX	REST	Services	2.0	

Your	client	address	is:	150.76.16.64	

Copyright	©	2008-2017,	etherFAX,	LLC	

	
Supported	Request	Formats	
	
The	etherFAX	REST	API	observes	the	Content-Type	value	in	the	HTTP	header	when	performing	POST	operations	
(i.e.	sending	a	fax).	Supported	Content-Type	values	are:	

• application/x-www-form-urlencoded	
• application/json	

Supported	Response	Formats	
	
The	optional	&f	parameter	may	be	used	to	explicitly	request	JSON	or	XML	responses	from	the	etherFAX	web	
service.	If	omitted,	all	responses	will	be	returned	in	the	JSON	format.	

Date	and	Time	Formats	
	
All	date/time	values	are	represented	in	UTC.	

Authentication	
	
The	etherFAX	REST	web	service	supports	the	Basic	HTTP	authorization	model.	Each	client	must	use	the	etherFAX	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 3	

account	number,	user	name	and	password	provided	by	etherFAX	personnel.	When	authenticating	against	the	
REST	web	services,	you	must	make	sure	all	GET/POST	operations	have	correctly	added	the	Authorization	header	
to	HTTP	request	using	basic	authentication.	

Example:	

EFAX-9999/user:password

HTTP	Header:	

Authorization: Basic RUZBWC05OTk5L3VzZXI6cGFzc3dvcmQ=

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 4	

Accounts	Controller	
	
This	resource	is	used	to	query	information	from	the	current	account,	features	that	are	enabled,	supported	file	
formats	and	other	information.	

Uri	Template:	

[GET] “accounts”

Parameters:	
	
This	controller	supports	no	parameters	or	additional	functions	at	this	time.	

Example:	

[GET] https://na.connect.etherfax.net/rest/2.0/api/accounts

Response:	

{
 "Account": "EFAX-9999",
 "Name": "etherFAX Dev",
 "AccountId": 101,
 "Ports": 4,
 "Enabled": true,
 "Features": [
 "FaxResume",
 "NoRedialAttempts",
 "InternationalDialing",
 "InactiveCallRejection"
],
 "AcceptedFormats": [
 "image/tiff",
 "application/pdf"
],
 "Numbers": 2,
 "Country": 1,
 "CreatedOn": “2009-01-12T11:26:48.237”
}

Example:	XML	response	
	
This	example	is	shown	to	demonstrate	the	use	of	the	optional	&f	parameter	supported	by	each	controller.	

[GET] https://na.connect.etherfax.net/rest/2.0/api/accounts?f=xml

Response:	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 5	

<?xml version="1.0" standalone="no"?>
<FaxAccount xmlns:i="http://www.w3.org/2001/XMLSchema-instance
xmlns="http://schemas.datacontract.org/2004/07/EtherFax.Common>
 <AcceptedFormats
xmlns:d2p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays>
 <d2p1:string>image/tiff</d2p1:string>
 <d2p1:string>application/pdf</d2p1:string>
 </AcceptedFormats>
 <Account>EFAX-9999</Account>
 <AccountId>101</AccountId>
 <Country>1</Country>
 <CreatedOn>2009-01-12T11:26:48.237</CreatedOn>
 <Enabled>true</Enabled>
 <Features
xmlns:d2p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays>
 <d2p1:string>FaxResume</d2p1:string>
 <d2p1:string>NoRedialAttempts</d2p1:string>
 <d2p1:string>InternationalDialing</d2p1:string>
 <d2p1:string>InactiveCallRejection</d2p1:string>
 </Features>
 <Name>etherFAX Dev</Name>
 <Numbers>2</Numbers>
 <Ports>4</Ports>
</FaxAccount>

	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 6	

Outbox	Controller	
	
This	resource	is	used	to	send	faxes	through	the	etherFAX	network	to	a	destination	fax	number	(or	etherFAX	
endpoint).	

Uri	Template:	

[POST] “outbox”

Parameters:	
	
The	following	parameters	are	supported	when	performing	a	POST	operation	to	the	outbox	controller.	If	you	are	
using	the	urlencoded	form	of	this	function	(Content-Type:	application/x-www-form-urlencoded),	each	parameter	
must	be	URL	encoded	in	the	post	data	associated	with	the	HTTP	request.	

Parameter	 Description	

DialNumber	 Specifies	the	number	to	be	dialed.	This	may	be	a	long	distance	human	
readable	number	or	E.164	(+18005551234)	format.	

LocalId	 (Optional)	Sets	the	fax	id	(CSID)	for	the	send	request.	This	is	the	fax	CSID	
displayed	by	the	remote	fax	system.	This	field	supports	up	to	21	
characters.	

CallerId	 (Optional)	Sets	the	caller	id	for	this	send	request.	Where	possible,	this	
number	will	appear	as	the	calling	party/id	to	the	remote	system.	For	
maximum	effectiveness	within	carrier	networks,	a	“toll”	DID	is	highly	
recommended.	

TotalPages	 Specifies	the	total	number	of	pages	in	the	fax	image	file.	

TimeZoneOffset	 Specifies	the	time	zone	offset	of	the	originator.	This	value	is	used	to	
maintain	the	local	time	of	the	originator	in	the	fax	header	(i.e.	-5	for	
Eastern	Standard	Time).	

Tag	 (Optional)	Sets	a	user	defined	string	associated	with	the	fax	request.	This	
string	will	appear	in	<FaxStatus>	responses	making	it	easier	for	
applications	to	track	their	fax	messages.	This	field	supports	up	to	32	
characters.	

FaxImage	 Contains	the	base64	encoded	string	representing	the	binary	image	data	
(tiff,	pdf	or	other	supported	document	format).	

Header	 Specifies	the	header	format	string	displayed	at	the	top	of	each	page	of	
this	fax	job.	Keywords	and	examples	are	shown	below.	

TZ	 Specifies	the	time	zone	offset	of	the	originator	and	functions	similar	to	
TimeZoneOffset.	However,	this	parameter	also	supports	Linux	style	time	
zones	such	as	“America/Chicago”,	“America/New_York”,	etc.	Using	this	
parameter	overrides	the	TimeZoneOffset	value	(if	specified)	and	
automatically	adjusts	for	daylight	savings	for	the	time	zone.	

	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 7	

Remarks:	
	
After	the	POST	operation,	the	etherFAX	service	will	respond	with	an	abbreviated	<FaxStatus>	response	indicating	
whether	the	fax	operation	was	successfully	submitted	to	the	etherFAX	network.	A	FaxResult	value	of	InProgress	
indicates	that	that	the	fax	has	been	accepted	and	a	unique	identifier	has	been	assigned	to	the	event.	All	events	
within	the	etherFAX	network	have	globally	unique	identifiers	assigned	for	their	lifetime.	These	are	also	known	as	
GUIDs.	

All	fax	images	presented	for	transmission	should	confirm	to	the	TIFF-F	minimum	baseline	(see	TIFF	specification).	
For	best	results,	only	submit	fax	images	that	are	bi-tonal	(black	&	white),	have	a	standard	fax	width	of	1728	pixels	
and	are	roughly	200x200	(fine)	or	200x100	(coarse)	dots	per	inch	(resolution).	

etherFAX	also	supports	PDF	document	delivery.	

Note,	each	etherFAX	account	is	configured	with	a	maximum	number	of	ports	(channels)	to	limit	the	number	of	
outbound	fax	operations.	If	the	number	of	active	channels	exceeds	this	configuration,	the	fax	event	will	be	
rejected	with	a	FaxResult	value	of	ChannelUnavailable.	

*	See	FaxResult	section	for	explanation	of	the	<FaxResult>	values.	

Response:	

{
 "JobId": "aa52f281-44dd-45bf-a586-d12d127dd733",
 "FaxResult": 2,
 "State": 0,
 "PagesDelivered": 0,
 "ConnectTime": 0,
 "ConnectSpeed": 0,
 "RemoteId": null,
 "Tag": null,
 "CompletedOn": null
}

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 8	

The	following	actions	are	also	supported	on	the	outbox	controller.	

Parameter	 Description	

pending	 Returns	the	number	of	active/pending	events	in	the	outbox	for	the	given	
account,	including	the	number	of	channels	available	for	sending.	

	

Example:	

[GET] https://na.connect.etherfax.net/rest/2.0/api/outbox?a=pending

Response:	

{
 "PendingFaxes": 0,
 "AvailableChannels": 4
}

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 9	

The	header	parameter	supports	the	following	keywords	and	optional	formatting:	

Keyword	 Description	

{date}	 Shows	current	date	adjusted	to	account’s	local	time	zone.	

{date:format}	 Shows	current	date	adjusted	to	account’s	local	time	zone	with	optional	
formatting.	

{time}	 Shows	current	time	adjusted	to	account’s	local	time	zone.	

{time:format}	 Shows	current	time	adjusted	to	account’s	local	time	zone	with	optional	
formatting.	

{utcdate}	 Shows	the	current	date	in	UTC.	

{utcdate:format}	 Shows	the	current	date	in	UTC	with	optional	formatting.	

{utctime}	 Shows	the	current	time	in	UTC	

{utctime:format}	 Shows	the	current	time	in	UTC	with	optional	formatting.	

{csid}	
{from}	

Shows	the	sender	CSID’s	(Call	Subscriber	Identification)	information.	

{number}	
{to}	

Shows	the	destination	fax	number.	

{page}	 Shows	the	current	page	number.	

{pages}	 Shows	the	current	page	number	and	total	pages	in	fax.	This	is	equivalent	
to	using:	“{page}	/	{total}”	

{total}	 Shows	the	total	page	count.	

	
	
Default	header	used	by	etherFAX:	

“ {date} {time} FROM: {csid} TO: {number} P. {page}”

Output:	

 “ 05/06/2014 08:46 AM FROM: etherFAX, LLC TO: +18005551234 P. 1”

	
Example	using	date	formatting:	

“ {date:d-MMM-yyyy} {time} FROM: {csid} TO: {number} P. {page}”

Output	

 “ 6-May-2014 08:46 AM FROM: etherFAX, LLC TO: +18005551234 P. 1”

	
Note:	It	is	best	to	leave	2	spaces	at	the	beginning	of	the	header	string	to	avoid	the	header	starting	too	close	to	the	
left	edge	of	the	page.	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 10	

Status	Controller	
	
This	resource	is	used	to	monitor	the	status	of	one	or	more	fax	events	using	their	unique	identifier	(GUID).	

Applications	SHOULD	NOT	invoke	this	method	excessively	and	no	more	frequently	than	1-2	times	per	minute	
when	polling	for	fax	completion.	

The	status	function	now	provides	the	ability	to	wait	for	events	within	the	etherFAX	network,	such	as	new	fax	
received,	fax	completed,	and	fax	job	status	changed	(dial	state	changes,	page	completed,	etc.).	This	
implementation	is	used	as	a	pseudo	“push-notification”	service	that	allows	the	remote	client	to	respond	to	events	
in	real-time	as	they	occur	vs.	simply	polling	every	30	to	60	seconds.	An	example	of	its	use	is	described	further	in	
this	section.	

Uri	Template:	

[GET] “status?id={id}&wait={timeout}&type={type}
[GET] “status?id={id},{id},…

Parameters:	
	
The	following	parameters	are	supported	when	performing	a	GET	operation	on	the	status	controller.	This	method	
is	designed	to	query	multiple	status’	in	one	single	call.	This	is	more	resource	friendly	and	produces	less	network	
traffic.	

Parameter	 Description	

id	 Specifies	one	or	more	unique	job	identifiers	(GUID)	separated	by	
commas.	

timeout	 Specifies	the	number	of	seconds	for	the	wait	timeout.	The	wait	timeout	
has	2	uses:	
	
• Wait	for	an	event	to	transpire	for	the	specified	job	id	(send	

complete,	in-job	status,	etc.).		
• Wait	for	account	wide	events	to	occur	(new	job	received,	send	

completed,	etc.).	

type	 Specifies	the	type	of	events	to	monitor	when	the	wait	timeout	has	been	
specified.	Valid	values	are:	receive,	send,	status	and	any.	
	
receive	wait	for	receive	event	(account	wide)	
send	 wait	for	send	event	(id	or	account	wide)	
status	 wait	for	send	job	status	(id	or	account	wide)	
any	 any	of	the	above	conditions	

	

	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 11	

Remarks:	
	
When	using	the	wait/timeout	options	in	this	function,	please	note	that	your	HTTP	client/code	must	be	configured	
to	timeout	at	or	greater	than	the	timeout	value	you’re	using.	As	a	general	rule,	add	5-10	seconds	to	your	HTTP	
client	timeout	as	compared	to	the	wait	timeout.	

Example:	

[GET] https://na.connect.etherfax.net/rest/2.0/api/status?id=ba93e53b-70b9-433d-
a84b-0000013437e6

Response:	

{
 "JobId": "ba93e53b-70b9-433d-a84b-0000013437e6",
 "FaxResult": 0,
 "State": 0,
 "PagesDelivered": 1,
 "ConnectTime": 41,
 "ConnectSpeed": 14400,
 "RemoteId": "9085551234",
 "Tag": "ID12345",
 "CompletedOn": "2015-04-28T00:35:23.113"
}

Example:	Status	with	wait	timeout	
	
This	example	queries	the	status	of	the	same	job	id	as	above,	but	instructs	the	service	to	not	return	until	60	
seconds	have	transpired	-or-	the	job	has	completed.	

[GET] https://na.connect.etherfax.net/rest/2.0/api/status?id=ba93e53b-70b9-433d-
a84b-0000013437e6&wait=60&type=send

	
	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 12	

Example:	Wait	for	account	wide	events	
	
This	example	performs	an	account	wide	status	query	with	a	60	second	timeout.	The	response	will	indicate	if	any	
of	the	conditions	have	been	triggered:	new	fax	received,	fax	completed,	or	fax	job	status.	

[GET] https://na.connect.etherfax.net/rest/2.0/api/status?&wait=60&type=any

Response:	

The	following	response	indicates	that	a	new	fax	was	received	while	waiting	for	the	status.	

{
 "FaxReceived": true,
 "FaxCompleted": false,
 "FaxStatus": false
}

	

	

	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 13	

Inbox	Controller	

This	resource	is	used	to	handle	all	receive	fax	operations.	The	actions	described	below	allow	the	application	to	
check	for	newly	received	faxes	and	mark	them	as	received	once	downloaded	successfully.	

Uri	Template:	

[GET] “inbox?a={action}&id={id}&count={count}&wait={timeout}&download={download}
&sid={sid}”

Parameters:	
	
The	following	actions/parameters	are	supported	when	performing	a	GET	operation	on	the	inbox	controller.	Each	
parameter	must	be	URL	encoded	in	the	post	data	associated	with	the	HTTP	request.	

Parameter	 Description	

list	 Returns	a	list	of	unread	faxes	for	the	given	account.	All	faxes	are	
returned	as	<FaxReceive>	child	nodes	in	the	response.	The	optional	
{count}	value	may	be	specified	to	limit	the	number	of	unread	faxes	
returned	in	the	list.	Setting	this	value	to	0	(or	omitted)	returns	all	unread	
faxes.	This	function	only	returns	the	information	associated	with	the	
received	fax	and	not	the	actual	fax	image	data.	

get	 Gets/downloads	the	<FaxReceive>	information	for	the	specified	fax	{id}.	
All	information	including	the	<FaxImage>	content	is	returned	using	this	
method.	

getnext	 Gets	and	optionally	downloads	the	next	unread	fax	(if	one	is	available)	
and	returns	the	<FaxReceive>	information.	The	{download}	parameter	
may	be	set	to	1	or	0	when	using	this	function.	This	function	is	designed	
for	multi-process	environments	that	attempt	to	receive	a	fax	using	the	
same	account.	To	resolve	contention,	only	one	peer	may	gain	access	to	
an	unread	fax	at	a	time.	If	the	peer	fails	to	download	the	fax	and	mark	it	
as	received	within	a	5-minute	window,	the	automatic	lock	on	the	fax	is	
released	and	another	peer	may	download	the	unread	fax.	Additionally,	
the	peer	may	also	set	the	{sid}	parameter	which	is	a	GUID	representing	
the	site-id.	etherFAX	will	record	the	site	id	responsible	for	downloading	
the	fax	document.	

received	 Marks	the	specified	fax	{id}	as	“received”	indicating	that	it	has	been	
successfully	read	or	delivered.	Once	an	application	has	guaranteed	that	
it	has	received	the	fax	intact,	it	should	mark	the	fax	as	received,	thus	
permanently	removing	the	fax	image	resource.	

unread	 Returns	the	number	of	unread	fax	events	for	the	given	account.	When	
using	the	unread	action,	you	may	optionally	provide	the	wait	timeout	
value	to	wait	for	a	new	fax.	

wait	 Specifies	the	timeout	in	seconds	to	wait	for	a	new	fax	to	arrive.	This	wait	
method	is	only	valid	when	using	the	unread	action.	When	waiting,	the	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 14	

function	will	return	immediately	if	unread	faxes	are	available	for	
download	or	a	new	fax	has	arrived	during	the	wait	period.	

	

Example:	Get	unread	fax	count	

[GET] https://na.connect.etherfax.net/rest/2.0/api/inbox?a=unread

Response:	

{
 "UnreadFaxes": 0
}

	
Example:	Get	unread	fax	count,	wait	timeout	
	
The	following	example	queries	the	number	of	unread	faxes	available.	If	no	unread	faxes	are	available	at	the	time	
this	function	is	called,	it	will	wait	up	to	120	seconds	for	a	new	fax	to	arrive.	If	a	new	fax	arrives	during	the	
wait/timeout	period,	this	function	will	return	immediately	allowing	the	application	to	retrieve	the	new	fax	the	
instant	it	arrives	within	the	etherFAX	network.	

[GET] https://na.connect.etherfax.net/rest/2.0/api/inbox?a=unread&wait=120

Example:	List	all	unread	faxes	

[GET] https://na.connect.etherfax.net/rest/2.0/api/inbox?a=list

Response:	
	
[
 {
 "JobId": "833fd712-2ca2-4c7b-8b26-8166629963de",
 "FaxResult": 0,
 "ConnectTime": 56,
 "ConnectSpeed": 33600,
 "PagesReceived": 2,
 "RemoteId": "9085551234",
 "CalledNumber": "+18005551234",
 "CallingNumber": "2125551234",
 "ReceivedOn": "2015-10-27T21:47:37.92",
 "FaxImage": null
 },
 {
 "JobId": "c12e1f95-77e7-4471-a456-508e43daa9a9",
 "FaxResult": 0,
 "ConnectTime": 68,
 "ConnectSpeed": 33600,
 "PagesReceived": 3,

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 15	

 "RemoteId": "9085551234",
 "CalledNumber": "+18005551234",
 "CallingNumber": "2125551234",
 "ReceivedOn": "2015-10-27T21:47:43.14",
 "FaxImage": null
 }
]

	
Example:	Mark	fax	received	

[GET] https://na.connect.etherfax.net/rest/2.0/api/inbox?a=received&id=c12e1f95-
77e7-4471-a456-508e43daa9a9

	

	

	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 16	

Routes	Controller	
	
The	routes	controller	provides	information	about	routes	associated	with	the	account,	number	parsing	and	
information	about	an	endpoint	(supported	document	formats,	etc.).	

Uri	Template:	

[GET] “routes?a={action}&id={id}&country={country}”

Parameters:	
	
The	following	actions	are	supported	for	the	numbers	controller.	Each	parameter	must	be	URL	encoded	in	the	post	
data	associated	with	the	HTTP	request.	

Parameter	 Description	

parse	 Parses	the	specified	number	in	{id}	and	returns	information	such	as	
destination	country,	etc.	The	{country}	parameter	may	be	used	to	
specify	the	country	of	origin.	If	omitted,	country	code	assigned	to	the	
account	will	be	used.	

list	 Lists	all	inbound	numbers	associated	with	the	given	account.	

info	 Retrieves	information	and	supported	file	formats	for	the	specified	
number	in	{id}.	

enable	
disable	

Enables	or	disables	the	route	specified	in	{id}.	Only	numbers/routes	
owned	by	the	account	may	be	enabled/disabled	using	this	function.	If	
the	route	is	not	found,	a	204	result	is	returned.	

id	 Specifies	the	phone	number	or	route/endpoint	to	analyze.	

	

Example:	

[GET] https://na.connect.etherfax.net/rest/2.0/api/routes?a=parse&id=8005551234

Response:

{
 "InternationalDialPrefix": "011",
 "Normalized": "8005551234",
 "Origin": "+1/United States/Canada",
 "E164": "+18005551234",
 "Destination": "+1/United States/Canada",
 "Route": "8005551234"
}

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 17	

Example	

[GET] https://na.connect.etherfax.net/rest/2.0/api/routes?a=info&id=8005551234

Response	

{
 "Route": "+18005551234",
 "AcceptedFormats": [
 "image/tiff",
 "application/pdf"
]
}

Example	

[GET] https://na.connect.etherfax.net/rest/2.0/api/routes?a=enable&id=8005551234

Response	
	
200/OK	
204/Not	Found	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 18	

Devices	Controller	
	
The	devices	controller	provides	the	required	functions	that	allow	customer	managed	devices	to	register	with	the	
etherFAX	network	securely,	send	and	receive	fax	documents	as	well	as	manage	specific	attributes	and	features	
associated	with	each	device.	

The	functions	made	available	are	functionally	similar	to	the	account	level	REST	functions,	but	are	specific	to	the	
scope	(or	perspective)	of	the	device.	For	instance,	requesting	a	list	of	unread	faxes	will	only	yield	results	for	the	
specific	device	in	question.	Inbound	DID/routes	dictate	which	device	a	particular	fax	will	be	bound	to	upon	arrival	
within	the	etherFAX	network.	

Uri	Template:	

[GET] “devices?a={action}&id={id}&addr={addr}&token={token}”

Parameters:	
	
The	following	actions	are	supported	for	the	devices	controller.	

Parameter	 Description	

register	 Performs	a	device	registration	to	the	etherFAX	network	and	returns	a	
security	token	used	for	subsequent	authentication.	Until	a	device	has	
been	created/enabled	within	the	etherFAX	network,	this	function	cannot	
be	completed	successfully.	Devices	already	registered	within	the	system	
may	not	be	re-registered	until	reset	within	the	etherFAX	administration	
portal.	

unread	 Returns	the	number	of	unread	faxes	waiting	for	the	associated	device.	
Since	the	default	device	is	selected	as	part	of	the	authentication	request,	
the	{id}	parameter	is	not	required.	This	function	behaves	similar	to	the	
inbox	controller,	except	an	additional	action	value	is	provided	in	the	
response.	

actionreset	 Though	the	device’s	action	is	implicitly	reset	when	the	“unread”	action	is	
invoked,	the	remote	client	may	explicitly	call	this	function	to	clear	the	
action	state	of	the	device.	

list	 Returns	a	list	of	unread	faxes	associated	with	the	specified	device.	

status	 Returns	the	current	status	of	the	device	including	properties	and	
features	associated	with	the	device.	This	should	be	invoked	is	the	action	
response	is	greater	than	0.	

setaddr	 Allows	the	remote	client	to	set	the	local	IP	address	of	the	device.	This	
function	serves	no	other	purposes	than	to	report	the	current	IP	address	
of	the	device	that	may	be	viewed	within	the	etherFAX	administrative	
portal.	

id	 Specifies	the	unique	serial	number	of	the	device.	

	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 19	

Example:	

[GET] https://na.connect.etherfax.net/rest/2.0/api/devices?a=unread

Response:

{
 "UnreadFaxes": 0
 "Action": 0
}

Example	

[GET] https://na.connect.etherfax.net/rest/2.0/api/devices?a=status

Response	

{
 "SerialNumber": "MT873615726",
 "Enabled": true,
 "SendEnable": true,
 "ReceiveEnable": true,
 "Reporting": 0,
 "SkipLines": 45,
 "LocalId": null,
 "CallerId": null,
 "PrinterIp": "192.168.1.100",
 "DeviceFlags": 3,
 "CreatedOn": "2016-09-19T17:15:38.707",
 "RegisteredOn": "2016-12-29T14:18:56.443",
 "TimeZone": "America/New_York"
}

Registering	A	Device	
	
Before	a	device	can	operate	within	the	etherFAX	network,	it	must	be	created	as	a	customer	device	and	enabled	
for	operation.	To	begin	the	registration	process,	each	device	must	have	the	current	date/time	set	correctly	and	
create	a	registration	URI	following	these	steps.	

In	this	example,	our	device	serial	number	is:	MT873615726	

Step	1:	Create	initial	MD5	hash	using	the	serial	number	as	input.	

Result:	3239f210aefade4a5de84cd018d18b44	

Step	2:	Create	temporary	string	using	current	date/time	and	initial	hash.	

“YYYY:MM:hash.DDD”	

Where	YYYY	=	year	since	1900,	MM	=	current	month	(0..11),	hash	(lower	case)	and	DDD	is	the	current	day	of	the	
year	(0..365).	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 20	

Example:	Feb	2,	2017	

	 “0117:01:3239f210aefade4a5de84cd018d18b44.032”	

Step	3:	Perform	final	MD5	hash	of	temporary	string.	

Result:	414d6d04931da79f6d9925e0c30b85a3	

Example:	
	
[GET]	
https://na.connect.etherfax.net/rest/2.0/api/devices?a=register&id=MT873615726&token=414d6d04931da79f6
d9925e0c30b85a3	

Response:	

{
 "DeviceToken": "54524a6421f1ddaf6781c79f9e176cfc"
}	

On	success,	an	HTTP	200/OK	response	and	device	security	token	will	be	returned.	If	the	device	is	not	enabled	or	
has	been	previously	registered,	an	HTTP	403/Forbidden	is	issued.	

Once	a	DeviceToken	has	been	created,	the	device	may	authenticate	against	the	etherFAX	REST	using	the	same	
basic	authorization	semantics.	However,	the	user	name	will	must	be	replaced	with	the	literal	string	of	“device/”	
followed	by	the	device	serial	number.	The	password	is	the	DeviceToken	returned	from	the	register	action.	After	
the	device	security	token	is	issued,	it	is	the	device’s	responsibility	to	persist	the	security	token	for	later	use.	

Device	Actions	
	
Though	most	of	the	following	actions	are	reserved	for	embedded	device	platforms	(such	as	the	etherFAX	A2E),	
device	developers	should	at	least	support	UpdateConfig	as	a	baseline	requirement.	This	allows	all	devices	to	be	
remotely	managed	from	the	etherFAX	administration	portal.	

 /// <summary>
 /// DeviceAction values.
 /// </summary>
 public enum DeviceAction
 {
 UpdateConfig = 1,
 Ping,
 Reboot,
 Unregister,
 UpdateFirmware,
 UploadLogs
 }

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 21	

FaxResult	and	FaxState	Values	
	
The	following	constants	are	used	to	describe	the	various	fax	results	(disposition)	and	states	of	transmission.	
	

FaxResult	values:	

 /// <summary>
 /// FaxResult values.
 /// </summary>
 public enum FaxResult
 {
 Success = 0,
 Error,
 InProgress,
 LineBusy,
 LineDead,
 LineFailure,
 NoDialTone,
 NoAnswer,
 InvalidOrMissingNumber,
 InvalidOrMissingFile,
 InvalidChannel,
 UnexpectedDisconnect,
 NoChannelsAvailable,
 ChannelUnavailable,
 NothingToCancel,
 DeviceTimeout,
 DeviceBusy,
 NotFaxMachine,
 IncompatibleFaxMachine,
 FileError,
 FileNotFound,
 FileUnsupported,
 CallCollision,
 Cancelled,
 CallBlocked,
 DestinationBlackListed,

 Unauthorized = 100,
 InvalidParameter,
 NotImplemented,
 ItemNotFound,
 }

	
	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 22	

FaxState	values:	

 /// <summary>
 /// FaxState values.
 /// </summary>
 public enum FaxState
 {
 Idle = 0,
 Initializing,
 Dialing,
 Answering,
 Negotiating,
 Sending,
 Receiving,
 Cancelling,
 Disconnecting,
 Conversion
 }

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 23	

Date/Time	Formatting	Values	
	
The	following	parameters	may	be	used	when	formatting	the	fax	header.	

Parameter	 Description	 Examples	

"d"	 The	day	of	the	month,	from	1	through	31.	

More	information:	The	"d"	Custom	Format	
Specifier.	

6/1/2009	1:45:30	PM	->	1	

6/15/2009	1:45:30	PM	->	15	

"dd"	 The	day	of	the	month,	from	01	through	31.	

More	information:	The	"dd"	Custom	Format	
Specifier.	

6/1/2009	1:45:30	PM	->	01	

6/15/2009	1:45:30	PM	->	15	

"ddd"	 The	abbreviated	name	of	the	day	of	the	week.	

More	information:	The	"ddd"	Custom	Format	
Specifier.	

6/15/2009	1:45:30	PM	->	Mon	(en-US)	

6/15/2009	1:45:30	PM	->	Пн	(ru-RU)	

6/15/2009	1:45:30	PM	->	lun.	(fr-FR)	

"dddd"	 The	full	name	of	the	day	of	the	week.	

More	information:	The	"dddd"	Custom	
Format	Specifier.	

6/15/2009	1:45:30	PM	->	Monday	(en-US)	

6/15/2009	1:45:30	PM	->	понедельник	
(ru-RU)	

6/15/2009	1:45:30	PM	->	lundi	(fr-FR)	

"h"	 The	hour,	using	a	12-hour	clock	from	1	to	12.	

More	information:	The	"h"	Custom	Format	
Specifier.	

6/15/2009	1:45:30	AM	->	1	

6/15/2009	1:45:30	PM	->	1	

"hh"	 The	hour,	using	a	12-hour	clock	from	01	to	
12.	

More	information:	The	"hh"	Custom	Format	
Specifier.	

6/15/2009	1:45:30	AM	->	01	

6/15/2009	1:45:30	PM	->	01	

"H"	 The	hour,	using	a	24-hour	clock	from	0	to	23.	

More	information:	The	"H"	Custom	Format	
Specifier.	

6/15/2009	1:45:30	AM	->	1	

6/15/2009	1:45:30	PM	->	13	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 24	

"HH"	 The	hour,	using	a	24-hour	clock	from	00	to	
23.	

More	information:	The	"HH"	Custom	Format	
Specifier.	

6/15/2009	1:45:30	AM	->	01	

6/15/2009	1:45:30	PM	->	13	

"m"	 The	minute,	from	0	through	59.	

More	information:	The	"m"	Custom	Format	
Specifier.	

6/15/2009	1:09:30	AM	->	9	

6/15/2009	1:09:30	PM	->	9	

"mm"	 The	minute,	from	00	through	59.	

More	information:	The	"mm"	Custom	Format	
Specifier.	

6/15/2009	1:09:30	AM	->	09	

6/15/2009	1:09:30	PM	->	09	

"M"	 The	month,	from	1	through	12.	

More	information:	The	"M"	Custom	Format	
Specifier.	

6/15/2009	1:45:30	PM	->	6	

"MM"	 The	month,	from	01	through	12.	

More	information:	The	"MM"	Custom	Format	
Specifier.	

6/15/2009	1:45:30	PM	->	06	

"MMM"	 The	abbreviated	name	of	the	month.	

More	information:	The	"MMM"	Custom	
Format	Specifier.	

6/15/2009	1:45:30	PM	->	Jun	(en-US)	

6/15/2009	1:45:30	PM	->	juin	(fr-FR)	

6/15/2009	1:45:30	PM	->	Jun	(zu-ZA)	

"MMMM"	 The	full	name	of	the	month.	

More	information:	The	"MMMM"	Custom	
Format	Specifier.	

6/15/2009	1:45:30	PM	->	June	(en-US)	

6/15/2009	1:45:30	PM	->	juni	(da-DK)	

6/15/2009	1:45:30	PM	->	uJuni	(zu-ZA)	

"s"	 The	second,	from	0	through	59.	

More	information:	The	"s"	Custom	Format	
Specifier.	

6/15/2009	1:45:09	PM	->	9	

"ss"	 The	second,	from	00	through	59.	 6/15/2009	1:45:09	PM	->	09	

	

etherFAX	REST	API	Reference	2.0	/	Copyright	©	2010-2017,	etherFAX,	LLC	 25	

More	information:	The	"ss"	Custom	Format	
Specifier.	

"t"	 The	first	character	of	the	AM/PM	designator.	

More	information:	The	"t"	Custom	Format	
Specifier.	

6/15/2009	1:45:30	PM	->	P	(en-US)	

6/15/2009	1:45:30	PM	->	午	(ja-JP)	

6/15/2009	1:45:30	PM	->	(fr-FR)	

"tt"	 The	AM/PM	designator.	

More	information:	The	"tt"	Custom	Format	
Specifier.	

6/15/2009	1:45:30	PM	->	PM	(en-US)	

6/15/2009	1:45:30	PM	->	午後	(ja-JP)	

6/15/2009	1:45:30	PM	->	(fr-FR)	

"y"	 The	year,	from	0	to	99.	

More	information:	The	"y"	Custom	Format	
Specifier.	

1/1/0001	12:00:00	AM	->	1	

1/1/0900	12:00:00	AM	->	0	

1/1/1900	12:00:00	AM	->	0	

6/15/2009	1:45:30	PM	->	9	

"yy"	 The	year,	from	00	to	99.	

More	information:	The	"yy"	Custom	Format	
Specifier.	

1/1/0001	12:00:00	AM	->	01	

1/1/0900	12:00:00	AM	->	00	

1/1/1900	12:00:00	AM	->	00	

6/15/2009	1:45:30	PM	->	09	

"yyy"	 The	year,	with	a	minimum	of	three	digits.	

More	information:	The	"yyy"	Custom	Format	
Specifier.	

1/1/0001	12:00:00	AM	->	001	

1/1/0900	12:00:00	AM	->	900	

1/1/1900	12:00:00	AM	->	1900	

6/15/2009	1:45:30	PM	->	2009	

"yyyy"	 The	year	as	a	four-digit	number.	

More	information:	The	"yyyy"	Custom	Format	
Specifier.	

1/1/0001	12:00:00	AM	->	0001	

1/1/0900	12:00:00	AM	->	0900	

1/1/1900	12:00:00	AM	->	1900	

6/15/2009	1:45:30	PM	->	2009	

